Gender differences in competitiveness and risk-taking among children, teenagers, and college students: Evidence from Jeopardy!

Michael Jetter (University of Western Australia)
Jay K. Walker (Old Dominion University)

Australian Gender Economics Workshop

February 8/9, 2018
Research questions

Studies show that...

1. women (sometimes) like competition less than men
 [this evidence is not as consistent]
Studies show that...

1. women (sometimes) like competition less than men
 [this evidence is not as consistent]

2. women are more risk-averse than men
 [this is pretty universal across studies]
Studies show that...

1. women (sometimes) like competition less than men
 [this evidence is not as consistent]

2. women are more risk-averse than men
 [this is pretty universal across studies]

3. the gender of opponents could influence both patterns
 (e.g., see Alison Booth’s studies with Patrick Nolan and others)
Our specific research questions

We ask 3 questions:

1. At what age (if any) do we observe gender differences in *competitiveness*?
Our specific research questions

We ask 3 questions:

1. At what age (if any) do we observe gender differences in *competitiveness*?

2. At what age (if any) do we observe gender differences in *risk-taking*?
Our specific research questions

We ask 3 questions:

1. At what age (if any) do we observe gender differences in *competitiveness*?
2. At what age (if any) do we observe gender differences in *risk-taking*?
3. Does the gender of opponents influence competitiveness and risk-taking at young ages?
Our data: Jeopardy shows in the US since 1984

Jeopardy!

- Game show where 3 contestants compete against each other to answer up to 61 ‘clues’ in 3 rounds of play.
Our data: Jeopardy shows in the US since 1984

Jeopardy!

- Game show where 3 contestants compete against each other to answer up to 61 ‘clues’ in 3 rounds of play.
- Clue values $200, $400, $600, $800, and $1,000 in the first 30 clues, then doubled for the next 30 (*Final Jeopardy!* at the end ignored here for various reasons)
Our data: Jeopardy shows in the US since 1984

Jeopardy!

- Game show where 3 contestants compete against each other to answer up to 61 ‘clues’ in 3 rounds of play.
- Clue values $200, $400, $600, $800, and $1,000 in the first 30 clues, then doubled for the next 30 (*Final Jeopardy!* at the end ignored here for various reasons)
- Whoever has the highest score at end of episode takes $$$ home and comes back next episode
Setup

Gender differences in competitiveness & risk-taking
Importantly:

There are episodes exclusively for kids (aged 10-12), teenagers (aged 13-17), and undergraduate college students.
Importantly:

There are episodes exclusively for kids (aged 10-12), teenagers (aged 13-17), and undergraduate college students.

We measure **competitiveness** by (i) winning an episode, (ii) choosing to answer a clue (‘buzzing in’), and (iii) answering correctly.

Risk-taking: wager in *Daily Double* clues.
Data, Identification, and Shortcomings

Data: We accessed the *J!Archive* website and hired a programmer to ‘scrape’ all available episodes with full info on each clue, contestants’ names, etc.

Sample: 62 kids, 202 teenager, 188 college student episodes.
Data, Identification, and Shortcomings

Data: We accessed the *J!Archive* website and hired a programmer to ‘scrape’ all available episodes with full info on each clue, contestants’ names, etc.

Sample: 62 kids, 202 teenager, 188 college student episodes.

Identification: We manually assign gender to each contestant’s name; those who could be either are easily identified via a Google search.

Michael Jetter & Jay K. Walker

Gender differences in competitiveness & risk-taking
Data, Identification, and Shortcomings

Data: We accessed the *J!Archive* website and hired a programmer to ‘scrape’ all available episodes with full info on each clue, contestants’ names, etc.

Sample: 62 kids, 202 teenager, 188 college student episodes.

Identification: We manually assign gender to each contestant’s name; those who could be either are easily identified via a Google search.

Shortcomings: Self-selection on the show – contestants may not be representative of the average female or male in society. [similar in lab experiments?]
Likelihood to win episode for female

Likelihood to win episode for male

Gender differences in competitiveness & risk-taking
Gender differences in competitiveness & risk-taking

Michael Jetter & Jay K. Walker
Likelihood to answer correctly for female

Likelihood to answer correctly for male

Michael Jetter & Jay K. Walker

Gender differences in competitiveness & risk-taking
Gender differences in competitiveness & risk-taking

Michael Jetter & Jay K. Walker

Wager as % of maximum

<table>
<thead>
<tr>
<th>Age group</th>
<th>Kids</th>
<th>Teenagers</th>
<th>College students</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wager female</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
</tr>
<tr>
<td>Wager male</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Winning episode and answering

| Dependent variable: | Kids | | | | | | Teenagers | | | | | | College students |
|---------------------|------|------|------|------|------|------|-----------------|------|------|------|------|------|-----------------|------|------|------|
| | (1) | (2) | (3) | (4) | (5) | (6) | Winning episode | Answering | Winning episode | Answering | Winning episode | Answering |
| Female | -0.066 | -0.023* | -0.042 | -0.010 | -0.077* | -0.011 | (0.070) | (0.013) | (0.039) | (0.007) | (0.041) | (0.007) |
| Control variables\(a\) | yes | | yes | | yes | | | | | | | |
| \# of players | 186 | 186 | 310 | 310 | 299 | 299 | | | | | | |
| \# of episodes | 62 | 62 | 202 | 202 | 188 | 188 | | | | | | |
| \(N\) | 186 | 10,878 | 606 | 36,813 | 561 | 34,185 | | | | | | |

Notes: Standard errors clustered on the player level are displayed in parentheses. * \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\).

\(a\)Includes binary indicators for black and other non-white races, as well as STEM clues and the 20 most common categories, the \$\ value of the clue, and the account balance of the contestant (both individual and relative to their opponents).
Data

Results

<table>
<thead>
<tr>
<th></th>
<th>Kids</th>
<th>Teenagers</th>
<th>College students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Answering correctly</td>
<td>Wager</td>
<td>Answering correctly</td>
</tr>
<tr>
<td>Female</td>
<td>0.015</td>
<td>0.030</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.042)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Control variables</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td># of players</td>
<td>186</td>
<td>124</td>
<td>310</td>
</tr>
<tr>
<td># of episodes</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>N</td>
<td>3,716</td>
<td>182</td>
<td>12,824</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered on the player level are displayed in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01.

\[a\] Includes binary indicators for black and other non-white races, as well as STEM clues and the 20 most common categories, the $ value of the clue, and the account balance of the contestant (both individual and relative to their opponents).
The gender of opponents: Females

Since contestants cannot choose the gender of their opponents, we can test whether they compete or wager differently when competing against the other gender.
Since contestants cannot choose the gender of their opponents, we can test whether they compete or wager differently when competing against the other gender.

The number of male opponents is not a statistically significant predictor of females’ competitiveness or risk-taking. The same when forming binary variables for 1 or 2 male opponents.
The gender of opponents: Females

Since contestants cannot choose the gender of their opponents, we can test whether they compete or wager differently when competing against the other gender.

The number of male opponents is not a statistically significant predictor of females’ competitiveness or risk-taking. The same when forming binary variables for 1 or 2 male opponents.

This result prevails for kids, teenagers, and college students in our sample.
The gender of opponents: Males

No differences in winning episode and choosing to answer.
No differences in winning episode and choosing to answer. But:

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Kids</th>
<th>Teenagers</th>
<th>College students</th>
</tr>
</thead>
<tbody>
<tr>
<td># of female opponents</td>
<td>0.019</td>
<td>-0.049</td>
<td>-0.014**</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.057)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Control variables(^a)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td># of players</td>
<td>97</td>
<td>64</td>
<td>157</td>
</tr>
<tr>
<td># of episodes</td>
<td>62</td>
<td>49</td>
<td>189</td>
</tr>
<tr>
<td>N</td>
<td>1,968</td>
<td>91</td>
<td>7,153</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered on the player level are displayed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
\(^a\)Includes binary indicators for STEM clues and the 20 most common categories, the $ value of the clue, and the account balance of the contestant (both individual and relative to their opponents).
What can we learn?

Takeaways:

- No gender differences in competitiveness among kids, teenagers, and college students in *Jeopardy*!
- Males begin to wager (= risk) substantially more as they become teenagers, leading to the emergence of the gender gap. Magnitude: teenage girls wager 7.3 percentage points less of their maximum wager than teenage boys (\approx 451).
- Surprisingly, gender of opponents doesn’t matter for young females.
- Male teenagers and college students wager substantially less when competing against females.